Pseudogap and Kinetic Pairing Under Critical Differentiation of Electrons in Cuprate Superconductors

نویسندگان

  • Masatoshi Imada
  • Shigeki Onoda
چکیده

Superconducting mechanism of cuprates is discussed in the light of the proximity of the Mott insulator. The proximity accompanied by suppression of coherence takes place in an inhomogeneous way in the momentum space in finite-dimensional systems. Studies on instabilities of metals consisted of such differentiated electrons in the momentum space are reviewed from a general point of view. A typical example of the differentiation is found in the flattening of the quasiparticle dispersion discovered around momenta (π, 0) and (0, π) on 2D square lattices. This flattening even controls the criticality of the metal-insulator transition. Such differentiation and suppressed coherence subsequently cause an instability to the superconducting state in the second order of the strong coupling expansion. The d-wave pairing interaction is generated from such local but kinetic processes in the absence of disturbance from the coherent single-particle excitations. The superconducting mechanism emerges from a direct kinetic origin which is conceptually different from the pairing mechanism mediated by bosonic excitations as in magnetic, excitonic, and BCS mechanisms. Pseudogap phenomena widely observed in the underdoped cuprates are then naturally understood from the mode-mode coupling of d-wave superconducting (dSC) fluctuations repulsively coupled with antiferromagnetic (AFM) ones. When we assume the existence of a strong d-wave channel repulsively competing with AFM fluctuations under the formation of flat and damped single-particle dispersion, we reproduce basic properties of the pseudogap seen in the magnetic resonance, neutron scattering, angle resolved photoemission and tunneling measurements in the cuprates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairing in a dry Fermi sea

In the traditional Bardeen-Cooper-Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability...

متن کامل

Quantum critical point for stripe order: An organizing principle of cuprate superconductivity

A spin density-wave quantum critical point (QCP) is the central organizing principle of organic, iron-pnictide, heavy-fermion and electron-doped cuprate superconductors. It accounts for the superconducting Tc dome, the non-Fermi-liquid resistivity, and the Fermi-surface reconstruction. Outside the magnetically ordered phase above the QCP, scattering and pairing decrease in parallel as the syste...

متن کامل

Probing d-wave pairing correlations in the pseudogap regime of the cuprate superconductors via low-energy states near impurities

The issue of probing the pseudogap regime of the cuprate superconductors, specifically with regard to the existence and nature of superconducting pairing correlations of d-wave symmetry, is explored theoretically. It is shown that if the d-wave correlations believed to describe the superconducting state persist into the pseudogap regime, but with pair-potential phase fluctuations that destroy t...

متن کامل

Angular Resolved Photoemission on Pb-bi2201: Doping- Dependent Evolution of the Pseudogap in the Underdoped Case

In search for the pairing mechanism of the hole doped high temperature superconductors there is still lively debate about the nature of the pseudogap [1] [5]. Some groups report a vanishing pseudogap around optimum doping [2] leading to the idea of a quantum critical point. Other measurements show a smooth convergence of the pseudogap temperature with the superconducting critical temperature in...

متن کامل

0 Theory of Electron Differentiation , Flat Dispersion and Pseudogap Phenomena

Aspects of electron critical differentiation are clarified in the proximity of the Mott insulator. The flattening of the quasiparticle dispersion appears around momenta (π, 0) and (0, π) on square lattices and determines the criticality of the metal-insulator transition with the suppressed coherence in that momentum region of quasiparticles. Such coherence suppression at the same time causes an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000